Chapter 5 MOS Capacitor

MOS: Metal-Oxide-Semiconductor

MOS capacitor

MOS transistor
This energy-band diagram for $V_g = 0$ is not the simplest one.
5.1 Flat-band Condition and Flat-band Voltage

The band is flat at the flat band voltage.

\[V_{fb} = \psi_g - \psi_s \]

- \(E_0 \): Vacuum level
- \(E_0 - E_f \): Work function
- \(E_0 - E_c \): Electron affinity
- Si/SiO\(_2\) energy barrier

\(\chi_{SiO_2} = 0.95 \text{ eV} \)
\(\chi_{Si} + (E_c - E_f) = 4.05 \text{ eV} \)

- \(q \psi_g \): 3.1 eV
- \(q V_{fb} \): 4.8 eV
- \(E_c \): 9 eV

\(E_0 \)
\(E_c \)
\(E_f \)
\(E_v \)
\(\text{P-body} \)
\(\text{N}^+ \text{-poly-Si} \)
5.2 Surface Accumulation

\[V_g = V_{fb} + \phi_s + V_{ox} \]

\(\phi_s \) : surface potential, band bending

\(V_{ox} \): voltage across the oxide

\(\phi_s \) is negligible when the surface is in accumulation.
5.2 Surface Accumulation

\[V_{ox} = V_g - V_{fb} \]

Gauss’s Law \(\rightarrow \)
\[V_{ox} = -\frac{Q_{acc}}{C_{ox}} \]

\[Q_{acc} = -C_{ox} (V_g - V_{fb}) \]

\[V_{ox} = -\frac{Q_s}{C_{ox}} \]
5.3 Surface Depletion ($V_g > V_{fb}$)

$$V_{ox} = -\frac{Q_s}{C_{ox}} = -\frac{Q_{dep}}{C_{ox}} = \frac{qN_a W_{dep}}{C_{ox}} = \frac{\sqrt{qN_a 2\varepsilon_s \phi_s}}{C_{ox}}$$
5.3 Surface Depletion

\[V_g = V_{fb} + \phi_s + V_{ox} = V_{fb} + \phi_s + \frac{\sqrt{qN_a 2\varepsilon_s \phi_s}}{C_{ox}} \]

This equation can be solved to yield \(\phi_s \).
5.4 Threshold Condition and Threshold Voltage

Threshold (of inversion):

\[n_s = N_a \], or

\[(E_c - E_f)_{\text{surface}} = (E_f - E_v)_{\text{bulk}}, \] or

- \(A = B \), and \(C = D \)

\[\phi_{st} = 2\phi_B = 2 \frac{kT}{q} \ln \left(\frac{N_a}{n_i} \right) \]

\[q\phi_B = \frac{E_g}{2} - (E_f - E_v) \bigg|_{\text{bulk}} = \frac{kT}{q} \ln \left(\frac{N_v}{n_i} \right) - \frac{kT}{q} \ln \left(\frac{N_v}{N_a} \right) = \frac{kT}{q} \ln \left(\frac{N_a}{n_i} \right) \]
Threshold Voltage

\[V_g = V_{fb} + \varphi_s + V_{ox} \]

At threshold,

\[\varphi_{st} = 2\phi_B = 2 \frac{kT}{q} \ln \left(\frac{N_a}{n_i} \right) \]

\[V_{ox} = \frac{\sqrt{qN_a 2\varepsilon_s 2\phi_B}}{C_{ox}} \]

\[V_t = V_g \text{ at threshold} = V_{fb} + 2\phi_B + \frac{\sqrt{qN_a 2\varepsilon_s 2\phi_B}}{C_{ox}} \]
Threshold Voltage

\[V_t = V_{fb} \pm 2\phi_B \pm \frac{\sqrt{qN_{sub}2\varepsilon_s2\phi_B}}{C_{ox}} \]

- for P-body,
- for N-body

Body Doping Density (cm\(^{-3}\))

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
5.5 Strong Inversion—Beyond Threshold

\[V_g > V_t \]

\[W_{dep} = W_{dmax} = \sqrt{\frac{2\varepsilon_s 2\phi_B}{qN_a}} \]

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Inversion Layer Charge, Q_{inv} (C/cm2)

\[V_g = V_{fb} + 2\phi_B - \frac{Q_{\text{dep}}}{C_{ox}} - \frac{Q_{\text{inv}}}{C_{ox}} = V_{fb} + 2\phi_B + \frac{\sqrt{qN_a 2\varepsilon_s 2\phi_B}}{C_{ox}} - \frac{Q_{\text{inv}}}{C_{ox}} \]

\[= V_t - \frac{Q_{\text{inv}}}{C_{ox}} \]

\[\therefore Q_{\text{inv}} = -C_{ox} (V_g - V_t) \]
5.5.1 Choice of V_t and Gate Doping Type

V_t is generally set at a small positive value so that, at $V_g = 0$, the transistor does not have an inversion layer and current does not flow between the two N$^+$ regions.

- P-body is normally paired with N$^+$-gate to achieve a small positive threshold voltage.
- N-body is normally paired with P$^+$-gate to achieve a small negative threshold voltage.
Review: Basic MOS Capacitor Theory

\[W_{d_{\text{max}}} = (2\varepsilon_s 2\phi_B/qN_a)^{1/2} \]

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Review: Basic MOS Capacitor Theory

\[Q_{dep} = -qN_dW_{dep} \]

\[Q_{inv} = -qN_dW_{dmax} \]

\[Q_{acc} = -qN_dW_{dep} \]

Total substrate charge, \(Q_s \):

\[Q_s = Q_{acc} + Q_{dep} + Q_{inv} \]
5.6 MOS CV Characteristics

\[C = \frac{dQ_g}{dV_g} = -\frac{dQ_s}{dV_g} \]
5.6 MOS CV Characteristics

\[C = \frac{dQ_g}{dV_g} = -\frac{dQ_s}{dV_g} \]

- accumulation regime
- depletion regime
- inversion regime

\[V_{fb} \]

\[\text{slope} = -C_{ox} \]

\[Q_{inv} \]

\[V_t \]
CV Characteristics

In the depletion regime:

\[
\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}}
\]

\[
\frac{1}{C} = \sqrt{\frac{1}{C_{ox}^2} + \frac{2(V_g - V_{fb})}{qN_a \varepsilon_s}}
\]
Supply of Inversion Charge May be Limited

In each case, $C = ?$

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Capacitor and Transistor CV (or HF and LF CV)

MOS transistor CV at any f, LF capacitor CV, or quasi-static CV

(HF) MOS capacitor CV

accumulation V_{fb} depletion V_t inversion V_g
The quasi-static CV is obtained by the application of a slow linear-ramp voltage (< 0.1V/s) to the gate, while measuring I_g with a very sensitive DC ammeter. C is calculated from $I_g = C \cdot dV_g/dt$. This allows sufficient time for Q_{inv} to respond to the slow-changing V_g.
EXAMPLE : CV of MOS Capacitor and Transistor

Does the QS CV or the HF capacitor CV apply?

(1) MOS transistor, 10kHz. (Answer: QS CV).
(2) MOS transistor, 100MHz. (Answer: QS CV).
(3) MOS capacitor, 100MHz. (Answer: HF capacitor CV).
(4) MOS capacitor, 10kHz. (Answer: HF capacitor CV).
(5) MOS capacitor, slow V_g ramp. (Answer: QS CV).
(6) MOS transistor, slow V_g ramp. (Answer: QS CV).
5.7 Oxide Charge—A Modification to V_{fb} and V_t

\[V_{fb} = V_{fb0} - \frac{Q_{ox}}{C_{ox}} = \psi_g - \psi_s - \frac{Q_{ox}}{C_{ox}} \]
Types of oxide charge:

- Fixed oxide charge, Si$^+$
- Mobile oxide charge, due to Na$^+$ contamination
- Interface traps, neutral or charged depending on V_{g}
- Voltage/temperature stress induced charge and traps—a reliability issue
EXAMPLE: Interpret this measured V_{fb} dependence on oxide thickness. The gate electrode is N^+ poly-silicon.

What does it tell us? Body work function? Doping type? Other?

Solution: $V_{fb} = \psi_g - \psi_s - Q_{ox} T_{ox} / \varepsilon_{ox}$
\[\psi_g - \psi_s = -0.15 \text{ V} \]

\(E_0 \), vacuum level

\(\psi_g \)

\(\psi_s = \psi_g + 0.15 \text{ V} \)

\(E_f, E_c \)

\(E_c, E_f \)

\(E_v \)

\(E_v \)

N\(^{+}\)-Si gate

Si body

N-type substrate, \(N_d = n = N_c e^{-0.15eV/kT} \approx 10^{17} \text{ cm}^{-3} \)

from slope \[Q_{ox} = 1.7 \times 10^{-8} \text{ C/cm}^2 \]
5.8 Poly-Silicon Gate Depletion—Effective Increase in T_{ox}

Gauss’s Law

$$W_{dpoly} = \varepsilon_{ox} E_{ox} / qN_{poly}$$

C

\[
C = \left(\frac{1}{C_{ox}} + \frac{1}{C_{poly}} \right)^{-1} = \left(\frac{T_{ox}}{\varepsilon_{ox}} + \frac{W_{dpoly}}{\varepsilon_s} \right)^{-1}
\]

\[
= \frac{\varepsilon_{ox}}{T_{ox} + W_{dpoly} / 3}
\]

If $W_{dpoly} = 15$ Å, what is the effective increase in T_{ox}?
Effect of Poly-Gate Depletion on Q_{inv}

$$Q_{inv} = C_{ox} (V_g - \phi_{poly} - V_t)$$

- Poly-gate depletion degrades MOSFET current and circuit speed.

- How can poly-depletion be minimized?

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
EXAMPLE : Poly-Silicon Gate Depletion

V_{ox}, the voltage across a 2 nm thin oxide, is -1 V. The P^+ poly-gate doping is $N_{pol} = 8 \times 10^{19}$ cm$^{-3}$ and substrate N_d is 10^{17} cm$^{-3}$. Find (a) W_{dpoly}, (b) ϕ_{pol}, and (c) V_g.

Solution:

(a) $W_{dpoly} = \varepsilon_{ox} E_{ox} / qN_{pol} = \varepsilon_{ox} V_{ox} / T_{ox} qN_{pol}$

\[
= \frac{3.9 \times 8.85 \times 10^{-14} \text{ (F/cm)} \times 1 \text{ V}}{2 \times 10^{-7} \text{ cm} \times 1.6 \times 10^{-19} \text{ C} \times 8 \times 10^{19} \text{ cm}^{-3}}
\]

\[
= 1.3 \text{ nm}
\]
EXAMPLE : Poly-Silicon Gate Depletion

(b) \[W_{dpoly} = \sqrt{\frac{2\varepsilon_s \phi_{poly}}{qN_{poly}}} \]

\[\phi_{dpoly} = qN_{poly}W_{dpoly}^2 / 2\varepsilon_s = 0.11 \text{ V} \]

(c) \[V_g = V_{fb} + \phi_{st} + V_{ox} + \phi_{poly} \]

\[V_{fb} = \frac{E_g}{q} - \frac{kT}{q} \ln \left(\frac{N_c}{N_d} \right) = 1.1 \text{ V} - 0.15 \text{ V} = 0.95 \text{ V} \]

\[V_g = 0.95 \text{ V} - 0.85 \text{ V} - 1 \text{ V} - 0.11 \text{ V} = -1.01 \text{ V} \]

Is the loss of 0.11 V from the 1.01 V significant?
5.9 Inversion and Accumulation Charge-Layer Thickness—Quantum Mechanical Effect

Average inversion-layer location below the Si/SiO$_2$ interface is called the *inversion-layer thickness, T_{inv}*.

$n(x)$ is determined by Schrodinger’s eq., Poisson eq., and Fermi function.
Electrical Oxide Thickness, T_{oxe}

- T_{inv} is a function of the average electric field in the inversion layer, which is $(V_g + V_t)/6T_{ox}$ (Sec. 6.3.1).
- T_{inv} of holes is larger than that of electrons because of difference in effective mass.
- T_{oxe} is the electrical oxide thickness.

$$T_{oxe} = T_{ox} + W_{dpoly}/3 + T_{inv}/3 \quad \text{at } V_g = V_{dd}$$
Effective Oxide Thickness and Effective Oxide Capacitance

\[Q_{inv} = C_{oxe} (V_g - V_t) \]

\[T_{oxe} = T_{ox} + \frac{W_{dpoly}}{3} + \frac{T_{inv}}{3} \]
Equivalent circuit in the depletion and the inversion regimes

General case for both depletion and inversion regions.

(a) In the depletion regions

(b) In the depletion regions

(c) $V_g \approx V_t$

(d) Strong inversion
Deep depletion, $Q_{inv} = 0$
Exposed to light
CCD Charge Transfer

(a) $V_1 > V_2 = V_3$

(b) $V_2 > V_1 > V_3$

(c) $V_2 > V_1 = V_3$
The reading row is shielded from the light by a metal film. The 2-D charge packets are read row by row.
5.10.2 CMOS Imager

CMOS imagers can be integrated with signal processing and control circuitries to further reduce system costs. However, the size constrain of the sensing circuit forces the CMOS imager to use very simple circuits.
5.11 Chapter Summary

N-type device: N⁺-polysilicon gate over P-body

P-type device: P⁺-polysilicon gate over N-body

\[V_{fb} = \psi_g - \psi_s + (-Q_{ox} / C_{ox}) \]

\[V_g = V_{fb} + \phi_s + V_{ox} + \phi_{poly} \]

\[= V_{fb} + \phi_s - Q_s / C_{ox} + \phi_{poly} \]
\[\phi_{st} = \pm 2\phi_B \text{ or } \pm (\phi_B + 0.45 \text{ V}) \]

\[\phi_B = \frac{kT}{q} \ln \frac{N_{sub}}{n_i} \]

\[V_t = V_{fb} + \phi_{st} \pm \frac{\sqrt{qN_{sub}2\varepsilon_s |\phi_{st}|}}{C_{ox}} \]

+ : N-type device, – : P-type device

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
What’s the diagram like at $V_g > V_t$? at $V_g = 0$?

Modern Semiconductor Devices for Integrated Circuits (C. Hu)
What is the root cause of the low C in the HF CV branch?